

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

1 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
	-	1 30	Permanent Facility		
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.723 % to 0.475 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.475 % to 0.136 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	8.021 % to 0.443 %
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.111 % to 0.13 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

2 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.443 % to 0.111 %
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 nF to 100 nF	7.737 % to 1.792 %
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	10 mF to 100 mF	1.73 % to 5.08 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μF to 10 mF	1.85 % to 1.73 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 nF to 100 μF	1.79 % to 1.85 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

3 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator with 50T Current Coil by Direct Method	20 A to 1000 A	0.956%
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	3.3 A to 20 A	0.144 % to 0.215 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	30 μA to 329.9 μA	0.348 % to 0.29 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 μA to 329.9 mA	0.29 % to 0.173 %
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 mA to 3.3 A	0.173 % to 0.144 %
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power Active , 1 Phase, 0.5 PF to UPF 30V to 300V, 0.1 A to 6 A, 50Hz	Using 3 Phase Power Energy Meter Calibrator by Direct Method	3 W to 1800 W	0.183 % to 0.178 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

4 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power Active , 3 Phase, UPF to 0.5 Lead/Lag 30 to 300V , 0.1 A to 6A, 50 HZ	Using 3 Phase Power Energy Meter Calibrator by Direct Method	9 W to 5400 W	0.579%
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	1 mV to 329.9 mV	0.233 % to 0.116 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	3.3 V to 1000 V	0.039 % to 0.062 %
19	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 mV to 3.3 V	0.116 % to 0.039 %
20	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	0.33 μF to 110 μF	0.76 % to 0.84 %
21	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	0.5 nF to 329 nF	0.535 % to 0.293 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

5 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
22	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	1 mF to 110 mF	1.808 % to 0.577 %
23	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	110 μF to 1 mF	0.84 % to 1.84 %
24	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	220 pF to 300 pF	5.881 % to 0.77 %
25	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	300 pF to 0.5 nF	0.77 % to 2.91 %
26	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	329 nF to 0.33 μF	0.29 % to 0.76 %
27	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Inductance @ 1 kHz	Using Decade Inductance Box with Direct Method	100 μH to 1 H	2.317 % to 2.312 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

6 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
28	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	10 μA to 100 μA	4.336 % to 0.194 %
29	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.194 % to 0.265 %
30	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.265 % to 0.194 %
31	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	2.71 % to 0.07 %
32	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.411 % to 0.12 %
33	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.07 % to 0.411 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

7 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
34	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	0.1 ohm to 100 ohm	3.557 % to 0.4 %
35	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 kohm to 1000 Mohm	0.014 % to 2.772 %
36	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 ohm to 100 kohm	0.4 % to 0.014 %
37	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	10 μA to 329.9 μA	0.25%
38	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	10.9 A to 20 A	0.70 % to 0.92 %
39	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	2.9 A to 10.9 A	0.076 % to 0.70 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

8 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
40	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator with 50T Current Coil by Direct Method	20 A to 1000 A	0.92 % to 0.92 %
41	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	329.9 μA to 329.9 mA	0.018 % to 0.026 %
42	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	329.9 mA to 2.9 A	0.026 % to 0.076 %
43	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	0.01 ohm to 329.9 ohm	2.743 % to 0.011 %
44	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	1 Gohm	2.41%
45	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 kohm	0.155%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

9 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
46	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 mohm	1.193%
47	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 ohm	0.156%
48	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	10 Gohm	2.47%
49	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 kohm	1.155%
50	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	10 Mohm	2.4 %
51	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 mohm to 10 mohm	1.159%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

10 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
52	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 ohm	0.156%
53	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	100 Gohm	3.81%
54	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 mohm	1.159%
55	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	100 Mohm	2.4%
56	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 ohm	0.155%
57	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	1000 Gohm	4.587%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

11 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
58	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	200 Mohm	2.34%
59	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	329.9 kohm to 1100 Mohm	0.015 % to 1.804 %
60	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	329.9 ohm to 329.9 kohm	0.011 % to 0.015 %
61	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	5 Mohm	2.71%
62	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	500 Mohm	2.32%
63	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	1 mV to 329.9 mV	0.358 % to 0.008 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

12 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
64	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	3.3 V to 1000 V	0.006 % to 0.007 %
65	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	329.9 mV to 3.3 V	0.008 % to 0.006 %
66	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT-100)	Using 6½ Digit Precision Multimeter by Direct Method	-200 °C to 800 °C	0.10°C
67	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (B Type)	Using Multi Product Calibrator by Direct Method	600 °C to 1800 °C	0.383°C
68	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (C Type)	Using Multi Product Calibrator by Direct Method	1 °C to 2300 °C	0.97°C
69	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (E Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 1000 °C	0.24°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

13 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
70	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (J Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1200 °C	0.27°C
71	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (K Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1370 °C	0.46°C
72	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (L Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 900 °C	0.20°C
73	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (N Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1300 °C	0.24 °C
74	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (R Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.466°C
75	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (S Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.533°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

14 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
76	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (T Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 400 °C	0.166°C
77	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (U Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 600 °C	0.315°C
78	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-100-385 Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 800 °C	0.041°C
79	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-1000-385 Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 630 °C	0.266°C
80	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (B Type)	Using Multi Product Calibrator by Direct Method	600 °C to 1800 °C	0.39°C
81	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (C Type)	Using Multi Product Calibrator by Direct Method	1 °C to 2300 °C	0.97°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

15 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
82	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (E Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 1000 °C	0.24°C
83	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (J Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1200 °C	0.27°C
84	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (K Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1370 °C	0.46°C
85	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (L Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 900 °C	0.20°C
86	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (N Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1300 °C	0.314°C
87	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (R Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.50°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

16 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
88	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (S Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.564°C
89	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (T Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 400 °C	0.153°C
90	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (U Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 600 °C	0.313°C
91	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	10 Hz to 100 kHz	0.012 % to 0.058 %
92	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	100 kHz to 1000 kHz	0.058 % to 0.014 %
93	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer / Hour Meter	Using Time Calibrator by Direct / Comparison Method	1 s to 10800 s	0.009 s to 4.796 s

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

17 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
94	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer / Hour Meter	Using Time Calibrator by Direct / Comparison Method	10800 s to 86400 s	4.796 s to 37.746 s
95	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator by Direct Method	10 Hz to 500 kHz	0.23 % to 0.015 %
96	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator by Direct Method	500 kHz to 2 MHz	0.015 % to 0.383 %
97	FLUID FLOW- FLOW MEASURING DEVICES	Hot Wire Anemometer, Vane Type Anemometer	Using Hot wire Anemometer with Wind Tunnel By Comparison Method	1.0 m/Sec to 20 m/Sec	6.5%
98	FLUID FLOW- FLOW MEASURING DEVICES	Rota meter, Gas Flow Meter, Flow Rate Measuring devices in Air medium	Using Gas Flow Calibrator / Gas Flow Analyzer by Comparison method	25 LPM to 100 LPM	2.1%
99	FLUID FLOW- FLOW MEASURING DEVICES	Rota meter, Gas Flow Meter, Flow Rate Measuring devices in Air medium	Using Gas Flow Calibrator / Gas Flow Analyzer by Comparison method	1 LPM to 25 LPM	12.73%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

18 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
100	MECHANICAL- ACCELERATION AND SPEED	Contact Tachometer / RPM Source / Speedo Meter / RPM Meter	Using Digital Tachometer & RPM Source By Comparison Method	10 rpm to 10000 rpm	6.05%
101	MECHANICAL- ACCELERATION AND SPEED	Non Contact Tachometer / Stroboscope / RPM Source / Speedo Meter	Using Digital Tachometer & RPM Source By Comparison Method	10 rpm to 99950 rpm	6.05%
102	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Speed / Centrifuge / RPM Indicator of Washing M/c, Speed / RPM Indicator Drying M/c L.C. 1 rpm and coarser	Using Digital Tachometer By Comparison method	10 rpm to 8000 rpm	6.05%
103	MECHANICAL- ACOUSTICS	Sound Level Meter @ 1kHz	Using Sound Level Calibrator by direct Method	114 dB	1.1dB
104	MECHANICAL- ACOUSTICS	Sound Level Meter @ 1kHz	Using Sound Level Calibrator by direct Method	94 dB	1.1dB

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

19 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
105	MECHANICAL- DENSITY AND VISCOSITY	Density Hydrometer / Brix Hydrometer / Baume Hydrometer / Twaddle Hydrometer/ Specific Gravity Hydrometer / Lactometer / Alcoholmeter	compatible liquids	0.600 g/ml to 1.550 g/ml	0.0016 g/ml
106	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Bevel Protractor /Inclinometer /Clinometer L.C 1 min and Coarser	Using Angle Gauges by Comparison Method	0°- 90° - 0°	4.5min
107	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Bore Dial Gauge (Transmission Accuracy Check Only) L.C 0.001 mm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 1 mm	1.52μm
108	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) 0.01 mm and Coarser	Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 1000 mm	15 μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

20 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
109	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) 0.01 mm and Coarser	Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 300 mm	11μm
110	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) 0.01 mm and Coarser	Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 600 mm	12.5μm
111	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Coating Thickness Gauge 0.1µm and Coarser	Using Master Foils by Comparison Method	0 to 1 mm	2.29 μm
112	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Combination Set /Degree Protractor (L.C.: 1°)	Using Angle Gauges by Comparison Method	0 to 180°	45min of arc
113	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Depth Caliper, Depth Gauges (Vernier / Digital/ Dial) L.C 0.01 mm and Coarser	Using Caliper Checker, Slip Gauge Set & Length Bar Set by Comparison Method	0 to 300 mm	12.31μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

21 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
114	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Depth Micrometer / Dial Gauge L.C. 0.01 mm and Coarser	Using Slip Gauge Set & Length Bar Set by Comparison Method	0 to 300 mm	11.48μm
115	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Gauge Lever L.C 1 μm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 1 mm	1.52μm
116	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Gauge Plunger L.C 0.1µm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 25 mm	1.66µm
117	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Thickness Gauge L.C. : 0.001 mm	Using Grade "0" Slip Gauges, by Comparison Method	0 to 25 mm	1.1μm
118	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Grade "0" Slip Gauges, by Comparison Method	0 to 25 mm	1.1µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

22 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
119	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar by Comparison Method	100 mm to 300 mm	4.22μm
120	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar by Comparison Method	25 mm to 100 mm	2.5µm
121	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar by Comparison Method	300 mm to 600 mm	8.4µm
122	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar by Comparison Method	600 mm to 1000 mm	12.7 μm
123	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Feeler Gauge / Master Foils	Using Universal length measuring machine by Comparison Method	0 to 1 mm	1.3µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

23 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
124	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Height Gauge (Vernier, Dial, Digital) 0.01 mm Coarser	Using Caliper Checker & Surface Plate by Comparison Method	0 to 1000 mm	16.2μm
125	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Height Gauge (Vernier, Dial, Digital) 0.01 mm Coarser	"Using Caliper Checker & Surface Plate by Comparison Method "	0 to 600 mm	14μm
126	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Inside Dial Caliper L.C. 0.025 mm & Coarser	Using Slip Gauge Set /Caliper Checker & Accessories by Comparison Method	10 mm to 35 mm	14.76μm
127	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Internal Micrometer (traverse) L.C. 0.01 mm & Coarser (Extension not more than 1000 mm)	Using Slip Gauge Set/Length Bar , Dial Gauge , Comparator Stand, caliper checker and Accessories by Comparison Method	5 mm to 1000 mm	14.2μm
128	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Measuring Tape / Pie Tape L.C. : 0.5 mm and Coarser	Using Scale & Tape Calibrator by Comparison Method	0 to 50 mtr.	289.1x v L (L in mtr.) μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

24 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
129	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Pin Gauge	Using Universal Length Measuring Machine by Comparison Method	0.15 mm to 20 mm	0.7μm
130	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Pistol Caliper L.C. : 0.1 mm and Coarser	Using Grade "0" Slip Gauges, by Comparison Method	0 to 100 mm	66.5μm
131	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Plug Gauge, Setting Plug Gauge, Width Gauge	Using Universal Length Measuring Machine by Comparison Method	0.15 mm to 100 mm	2.5µm
132	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Plug Gauge, Setting Plug Gauge, Width Gauge	Using Universal Length Measuring Machine with Setting Plug by Comparison Method	100 mm to 300 mm	4.95μm
133	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Ring Gauge, Setting Ring Gauge	Using Universal Length Measuring Machine with Setting Ring by Comparison Method	3 mm to 300 mm	5.58 μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

25 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
134	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Radius Gauge (Concave and Convex Profiles)	Using Video Measuring Machine by Comparison Method	0 to 25 mm	10.8μm
135	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Snap Gauge / Gap Gauge / C & I Type	Using Universal Length Measuring Machine with Setting Ring by Comparison Method	100 mm to 200 mm	3.38µm
136	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Snap Gauge / Gap Gauge / C & I Type	Using Universal Length Measuring Machine by Comparison Method	2.5 mm to 100 mm	2.9μm
137	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Standard Wire Gauge	Using Video Measuring Machine by Comparison Method	0.17 mm to 8 mm	5.39μm
138	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Steel Scale L.C 0.5 mm and Coarser	Using Scale & Tape Calibrator by Comparison Method	0 to 1000 mm	289x vL (L in mtr.) μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

26 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
139	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Test Sives	Using Video Measuring Machine by Comparison Method	0.075 mm to 10 mm	5.39 μm
140	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Test Sives	Using Digital Caliper by Comparison Method	10 mm to 50 mm	26.23 μm
141	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Test Sives	Using Digital Caliper by Comparison Method	50 mm to 100 mm	37.40 μm
142	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Measuring Wires	Using Universal Length Measuring Machine by Comparison Method	0.17 mm to 6.35 mm	0.52μm
143	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Pitch Gauge (Angle)	Using Video Measuring Machine by Comparison Method	Up to 90 °	6.0min

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

27 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
144	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Pitch Gauge (Pitch)	Using Video Measuring Machine by Comparison Method	0.4 mm to 6 mm	8.7µm
145	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Plug Gauge (W.C.P. /C.P./Setting Plug) Major Dia & Effective Dia	Using Universal Length Measuring Machine with Setting Plug, Measuring Wires by Comparison Method	100 mm to 300 mm	5.3 μm
146	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Plug Gauge (W.C.P. /C.P./Setting Plug) Major Dia & Effective Dia	Using Universal Length Measuring Machine with Measuring Wires by Comparison Method	3 mm to 100 mm	2.63µm
147	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Ring Gauge (WCR/CR) Effective Dia	Using Universal Length Measuring Machine with Setting Ring by Comparison Method	3 mm to 300 mm	4.77μm
148	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Ultrasonic Thickness Gauge L.C 0.01 mm	Using Slip Gauge Set by Comparison Method	0 to 100 mm	16.1µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

28 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
149	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Ultrasonic Thickness Gauge L.C 0.01 mm	Using Long Slip Gauge Block by Comparison Method	100 mm to 200 mm	31.1µm
150	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Weld Gauge- Angle Measurement	Using Video Measuring Machine by Comparison Method	0 to 90°	12.8min
151	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Weld Gauge- Depth Measurement	Using Video Measuring Machine & Slip Gauge Set by Comparison Method	0 to 25 mm	86µm
152	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Length Bar / Long Gauge Block /Micrometer Setting Standard	Using Universal Length Measuring Machine & Length Bar Set by Comparison Method	25 mm to 400 mm	1.25μm
153	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Length Bar / Long Gauge Block /Micrometer Setting Standard	Using Length bar and Dial Gauge 0.1 µm by Comparison Method	400 mm to 1100 mm	9.1μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

29 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
154	MECHANICAL- DUROMETER	Rubber Hardness Tester: Spring Force Calibration	Using Shore Hardness Tester Calibrator as per ASTM D 2240	10 Shore A to 100 Shore A	1.64Shore A
155	MECHANICAL- DUROMETER	Rubber Hardness Tester: Spring Force Calibration	Using Shore Hardness Tester Calibrator as per ASTM D 2240	10 Shore D to 100 Shore D	1.9Shore D
156	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator, DMM By Comparison method as per DKD-R 6-1	0 to 1000 bar	0.101bar
157	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator, DMM By Comparison method as per DKD- R 6-1	0 to 400 bar	0.054 bar
158	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator,DMM By Comparison method as per DKD-R 6-1	0 to 700 bar	0.083 bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

30 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
159	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Using Digital Pressure Calibrator, DMM By Comparison method as per DKD- R 6-1	-40 mbar to +40 mbar	0.012 mbar
160	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Indicator using Pneumatic pump, DMM By Comparison method as per DKD- R 6-1	0 to 1 bar	0.0008 bar
161	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Calibrator,DMM By Comparison method as per DKD-R 6-1	0 to 35 bar	0.0042 bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

31 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
162	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Calibrator, DMM By Comparison method as per DKD-R 6-1	0 to 7 bar	0.0014 bar
163	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Digital Pressure Indicator using Pneumatic pump , DMM By Comparison method as per DKD- R 6-1	-4 mbar to +4 mbar	0.03 mbar
164	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Vacuum Dial / Digital Gauges, Vacuum Calibrator & Vacuum Transmitters	Comparator, DMM	-1 bar to 0	0.0004 bar
165	MECHANICAL- PRESSURE INDICATING DEVICES	Pressure Absolute Barometer, Abs. Pressure Gauge	Digital Pressure Gauge (absolute) By Comparison Method as per DKD-R 6-1	150 mbar (abs.) to 3000 mbar (abs.)	0.52 mbar (abs.)

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

32 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
166	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	1 μl to 10 μl	0.05μΙ
167	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	10 μl to 100 μl	0.29µl
168	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	100 μl to 1000 μl	0.86µl
169	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric Fask & Bottle Top Dispenser	Using weighing balance of d:0.01 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 4787	1 ml to 100 ml	0.05 ml

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

33 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
170	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric Fask & Bottle Top Dispenser	Using Weighing balance with d: 10 mg respectively & distilled water Calibration of Glassware based on Gravimetric method as per ISO 4787	100 ml to 1000 ml	0.14 ml
171	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric Fask & Bottle Top Dispenser	Using Weighing balance with d: 10 mg, respectively & distilled water Calibration of Glassware based on Gravimetric method as per ISO 4787	1000 ml to 5000 ml	1.3 ml
172	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balance of Class II and Coarser, Readability: 0.01 g	Using F1 Class weights as per OIML R-76-1	100 mg to 1 kg	9 mg
173	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser Readability 0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 80 g	0.05 mg
174	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser, Readability :0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 200 g	0.06 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

34 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
175	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser, Readability :0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 5 g	0.01 mg
176	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class III and Coarser, Readability: 0.2 g	Using F1 Class weights as per OIML R-76-1	1 g to 20 kg	100 mg
177	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class III and Coarser, Readability: 1 g	Using F2 Class weights as per OIML R-76-1	5 g to 50 kg	2 g
178	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class IIII and Coarser, Readability: 10 g	Using F2 Class weights as per OIML R-76-1	100 g to 100 kg	10g
179	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	1 mg	0.002 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

35 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
180	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	10 g	0.02 mg
181	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	10 mg	0.002 mg
182	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	100 g	0.03 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

36 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
183	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	100 mg	0.002 mg
184	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	lg	0.003 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

37 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
185	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	2 g	0.003 mg
186	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	2 mg	0.002mg
187	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	20 g	0.02 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

38 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
188	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	20 mg	0.002 mg
189	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	200 g	0.05 mg
190	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	200 mg	0.002mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

39 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
191	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	5 g	0.004 mg
192	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	5 mg	0.002 mg
193	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	50 g	0.02 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

40 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
194	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	50 mg	0.002 mg
195	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	500 mg	0.002 mg
196	MECHANICAL- WEIGHTS	Mass-Weights F2 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 100 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	10 kg	90.96mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

41 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
197	MECHANICAL- WEIGHTS	Mass-Weights F2 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 1 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	1000 g	1.3 mg
198	MECHANICAL- WEIGHTS	Mass-Weights F2 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 10 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	5 kg	11.37 mg
199	MECHANICAL- WEIGHTS	Mass-Weights F2 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 1 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	500 g	1.11 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

42 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
200	MECHANICAL- WEIGHTS	Mass-Weights M1 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 10 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	2 kg	10.67 mg
201	MECHANICAL- WEIGHTS	Mass-Weights M1 Class and Coarser	Using F1 Class Standard Weights and Precision Balance of Readability: 100 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	20 kg	108.10mg
202	MECHANICAL- WEIGHTS	Mass-Weights M2 Class and Coarser	Using F2 Class Standard Weights and Precision Balance of Readability: 2 g method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	50 kg	1.93g

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

43 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
203	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo-Hygrometer/ RH Sensors/ with indicator / Recorder/ Data logger	Using Humidity Chamber & Digital RH & Temperature Indicator with Sensor Probe by Comparison Method	10 %rh to 95 %rh @25°C	1.68% rh
204	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo- Hygrometer/RH Sensors/ with indicator/ Recorder/ Data logger	Using Humidity Chamber & Digital RH & Temperature Indicator with Sensor Probe by Comparison Method	10 °C to 50 °C @ 50%rh	0.66°C
205	THERMAL- TEMPERATURE	Infrared Thermometer, Thermal Image, Radiation Pyrometer	Comparison using Black Body with Emissivity (0.95) Source with Using Infrared Thermometer	50 °C to 500 °C	3.25°C
206	THERMAL- TEMPERATURE	Liquid In Glass Thermometers	Using Liquid Low Temperature Bath With SPRT with Precision Temperature Scanner by Comparison Method	-30 °C to 50 °C	0.29°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

44 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
207	THERMAL- TEMPERATURE	Liquid In Glass Thermometers	Using oil Temperature Bath With SPRT with Precision Temperature Scanner by Comparison Method	50 °C to 250 °C	0.33°C
208	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter	Using in Dry Block Calibrator (400 to 1200°C) With S Type Thermocouple and Read Unit by Comparison Method	600 °C to 1200 °C	1.74°C
209	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter, Temp. Gauge	Using in Dry Block Calibrator (50 to 650°C)With SPRT with Precision Temperature Scanner by Comparison Method	250 °C to 600 °C	0.67°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

45 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
210	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter, Temp. Gauge, Temp. Calibrator	Using Silicon Oil Temperature Bath (50 to 250°C) With SPRT with Precision Temperature Scanner by Comparison Method	50 °C to 250 °C	0.28°C
211	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Temperature & RH Data Logger, Temperature & RH Data Logger with / without indicator, Data Logger (Inbuilt Sensor), Temperature inbuilt Sens	Using Low Temperature Bath With SPRT with Precision Temperature Scanner by Comparison	-30 °C to 50 °C	0.29°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

46 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		1 30	Site Facility		
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.723 % to 0.475 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.475 % to 0.136 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using AC/DC HV Probe with DMM By Direct Method	1 kV to 20 kV	1.68 % to 2.88 %
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using AC/DC HV Probe with DMM By Direct Method	20 kV to 40 kV	2.88 % to 2.965 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

47 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Power Active , 1 Phase, 0.5 PF to UPF, 30 V to 300 V , 0.1 A to 180 A ,50 Hz	Using Power Energy Analyser by Direct Method	3 W to 37.76 kW	1.156%
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Power Active , 3 Phase, UPF to 0.5 lead/lag, 30 V to 300V, 0.1 A to 180 A, 50 Hz	Using Power Energy Analyser by Direct Method	9 W to 113.76 kW	1.155%
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	8.021 % to 0.443 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.111 % to 0.13 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.443 % to 0.111 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

48 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 nF to 100 nF	7.737 % to 1.792 %
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	10 mF to 100 mF	1.73 % to 5.08 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μF to 10 mF	1.85 % to 1.73 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance @ 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 nF to 100 μF	1.79 % to 1.85 %
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator with 50T Current Coil by Direct Method	20 A to 1000 A	0.956%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

49 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	3.3 A to 20 A	0.144 % to 0.215 %
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	30 μA to 329.9 μA	0.348 % to 0.29 %
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 μA to 329.9 mA	0.29 % to 0.173 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 mA to 3.3 A	0.173 % to 0.144 %
19	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	1 mV to 329.9 mV	0.233 % to 0.116 %
20	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	3.3 V to 1000 V	0.039 % to 0.062 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

50 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
21	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator by Direct Method	329.9 mV to 3.3 V	0.116 % to 0.039 %
22	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	0.33 μF to 110 μF	0.76 % to 0.84 %
23	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	0.5 nF to 329 nF	0.535 % to 0.293 %
24	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	1 mF to 110 mF	1.808 % to 0.577 %
25	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	110 μF to 1 mF	0.84 % to 1.84 %
26	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	220 pF to 300 pF	5.881 % to 0.77 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

51 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
27	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	300 pF to 0.5 nF	0.77 % to 2.91 %
28	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator by Direct Method	329 nF to 0.33 μF	0.29 % to 0. 76 %
29	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Inductance @ 1 kHz	Using Decade Inductance Box with Direct Method	100 μH to 1 H	2.317 % to 2.312 %
30	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	10 μA to 100 μA	4.336 % to 0.194 %
31	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.194 % to 0.265 %
32	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.265 % to 0.194 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

52 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
33	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC High Voltage	Using AC/DC HV Probe with DMM By Direct Method	1 kV to 20 kV	2.683 % to 2.574 %
34	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC High Voltage	Using AC/DC HV Probe with DMM By Direct Method	20 kV to 30 kV	3%
35	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	2.71 % to 0.07 %
36	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.411 % to 0.12 %
37	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.07 % to 0.411 %
38	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	0.1 ohm to 100 ohm	3.557 % to 0.4 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

53 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
39	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 kohm to 1000 Mohm	0.014 % to 2.772 %
40	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 ohm to 100 kohm	0.4 % to 0.014 %
41	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	10 μA to 329.9 μA	0.25%
42	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	10.9 A to 20 A	0.70 % to 0.92 %
43	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	2.9 A to 10.9 A	0.076 % to 0.70 %
44	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator with 50T Current Coil by Direct Method	20 A to 1000 A	0.92 % to 0.92 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

54 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
45	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	329.9 μA to 329.9 mA	0.018 % to 0.026 %
46	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator by Direct Method	329.9 mA to 2.9 A	0.026 % to 0.076 %
47	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	0.01 ohm to 329.9 ohm	2.743 % to 0.011 %
48	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	1 Gohm	2.41%
49	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 kohm	0.155%
50	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 mohm	1.193%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

55 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
51	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 ohm	0.156%
52	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	10 Gohm	2.47%
53	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 kohm	1.155%
54	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	10 Mohm	2.4 %
55	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 mohm to 10 mohm	1.159%
56	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 ohm	0.156%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

56 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
57	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	100 Gohm	3.81%
58	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 mohm	1.159%
59	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	100 Mohm	2.4%
60	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 ohm	0.155%
61	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	1000 Gohm	4.587%
62	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	200 Mohm	2.34%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

57 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
63	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	329.9 kohm to 1100 Mohm	0.015 % to 1.804 %
64	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator by Direct Method	329.9 ohm to 329.9 kohm	0.011 % to 0.015 %
65	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	5 Mohm	2.71%
66	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using High Resistance Jig by Direct Method	500 Mohm	2.32%
67	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	1 mV to 329.9 mV	0.358 % to 0.008 %
68	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	3.3 V to 1000 V	0.006 % to 0.007 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

58 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
69	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator by Direct Method	329.9 mV to 3.3 V	0.008 % to 0.006 %
70	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT-100)	Using 6½ Digit Precision Multimeter by Direct Method	-200 °C to 800 °C	0.10°C
71	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (B Type)	Using Multi Product Calibrator by Direct Method	600 °C to 1800 °C	0.383°C
72	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (C Type)	Using Multi Product Calibrator by Direct Method	1 °C to 2300 °C	0.97°C
73	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (E Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 1000 °C	0.24°C
74	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (J Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1200 °C	0.27°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

59 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
75	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (K Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1370 °C	0.46°C
76	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (L Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 900 °C	0.20°C
77	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (N Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1300 °C	0.24 °C
78	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (R Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.466°C
79	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (S Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.533°C
80	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (T Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 400 °C	0.166°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

60 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
81	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (U Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 600 °C	0.315°C
82	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-100-385 Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 800 °C	0.041°C
83	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-1000-385 Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 630 °C	0.266°C
84	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (B Type)	Using Multi Product Calibrator by Direct Method	600 °C to 1800 °C	0.39°C
85	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (C Type)	Using Multi Product Calibrator by Direct Method	1 °C to 2300 °C	0.97°C
86	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (E Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 1000 °C	0.24°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

61 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
87	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (J Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1200 °C	0.27°C
88	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (K Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1370 °C	0.46°C
89	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (L Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 900 °C	0.20°C
90	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (N Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 1300 °C	0.314°C
91	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (R Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.50°C
92	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (S Type)	Using Multi Product Calibrator by Direct Method	2 °C to 1760 °C	0.564°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

62 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
93	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (T Type)	Using Multi Product Calibrator by Direct Method	-250 °C to 400 °C	0.153°C
94	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (U Type)	Using Multi Product Calibrator by Direct Method	-200 °C to 600 °C	0.313°C
95	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	10 Hz to 100 kHz	0.012 % to 0.058 %
96	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	100 kHz to 1000 kHz	0.058 % to 0.014 %
97	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer / Hour Meter	Using Time Calibrator by Direct / Comparison Method	1 s to 10800 s	0.009 s to 4.796 s
98	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer / Hour Meter	Using Time Calibrator by Direct / Comparison Method	10800 s to 86400 s	4.796 s to 37.746 s

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

63 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
99	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator by Direct Method	10 Hz to 500 kHz	0.23 % to 0.015 %
100	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator by Direct Method	500 kHz to 2 MHz	0.015 % to 0.383 %
101	FLUID FLOW- FLOW MEASURING DEVICES	Liquid Media Analog & Digital Water Flow Meter	Using hend held Ultrasonic Flow Meter by Comparison Method	1 m3/h to 250 m3/h	6%
102	FLUID FLOW- FLOW MEASURING DEVICES	Rota meter, Gas Flow Meter, Flow Rate Measuring devices in Air medium	Using Gas Flow Calibrator / Gas Flow Analyzer by Comparison method	25 LPM to 100 LPM	2.1%
103	FLUID FLOW- FLOW MEASURING DEVICES	Rota meter, Gas Flow Meter, Flow Rate Measuring devices in Air medium	Using Gas Flow Calibrator / Gas Flow Analyzer by Comparison method	1 LPM to 25 LPM	12.73%
104	MECHANICAL- ACCELERATION AND SPEED	Contact Tachometer / RPM Source / Speedo Meter / RPM Meter	Using Digital Tachometer & RPM Source By Comparison Method	10 rpm to 10000 rpm	6.05%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

64 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
105	MECHANICAL- ACCELERATION AND SPEED	Non Contact Tachometer / Stroboscope / RPM Source / Speedo Meter	Using Digital Tachometer & RPM Source By Comparison Method	10 rpm to 99950 rpm	6.05%
106	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Speed / Centrifuge / RPM Indicator of Washing M/c, Speed / RPM Indicator Drying M/c L.C. 1 rpm and coarser	Using Digital Tachometer By Comparison method	10 rpm to 8000 rpm	6.05%
107	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector- Angular- L.C 1 min	Using Angle Graticule by Comparison Method	0° to 360 °	2.29min
108	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector/Tool Makers Microscope / Optical Microscope, Linear X,Y Axis- L.C 0.001 mm	Using Glass scale by comparison method	0 to 300 mm	7μm
109	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector/Tool Makers Microscope / Optical Microscope- Magnification	Using Digital Caliper by Comparison Method	0 to 100 X	1.3%
110	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Surface Plate	Using Electronic Level by Comparison Method	Up to 3000 x 3000 mm	1.8*[(L+W)/125]µm (Where L is in mm)

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

65 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
111	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine (X , Y Axis) L.C. : 0.1 µm	Using Slip Gauge Set & Long Slip by Comparison Method	0 to 300 mm	2μm
112	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine (X , Y Axis) L.C. : 0.1 μm	Using Glass scale by comparison method	0 to 300 mm	4.5μm
113	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine Angular	Using Angle Gauge by Comparison Method	0 to 360 °	0.60min
114	MECHANICAL- HARDNESS TESTING MACHINES	Verification of Rockwell Hardness Tester By Indirect Method	Using Standard Test blocks as per IS 1586 - (Part 2):2018	10 HRBW to 100 HRBW	0.9HRBW
115	MECHANICAL- HARDNESS TESTING MACHINES	Verification of Rockwell Hardness Tester By Indirect Method	Using Standard Test blocks as per IS 1586 - (Part 2):2018	10 HRC to 70 HRC	0.64HRC
116	MECHANICAL- HARDNESS TESTING MACHINES	Verification of Rockwell Hardness Tester By Indirect Method	Using Standard Test blocks as per IS 1586 - (Part 2):2018	20 HRA to 95 HRA	0.60 HRA

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

66 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
117	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator, DMM By Comparison method as per DKD-R 6-1	0 to 1000 bar	0.101bar
118	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator, DMM By Comparison method as per DKD- R 6-1	0 to 400 bar	0.054 bar
119	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Digital Pressure Calibrator,DMM By Comparison method as per DKD-R 6-1	0 to 700 bar	0.083 bar
120	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Using Digital Pressure Calibrator, DMM By Comparison method as per DKD- R 6-1	-40 mbar to +40 mbar	0.012 mbar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

67 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
121	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Indicator using Pneumatic pump, DMM By Comparison method as per DKD- R 6-1	0 to 1 bar	0.0008 bar
122	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Calibrator,DMM By Comparison method as per DKD-R 6-1	0 to 35 bar	0.0042 bar
123	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Differential Pressure Transmitter	Digital Pressure Calibrator, DMM By Comparison method as per DKD-R 6-1	0 to 7 bar	0.0014 bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

68 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
124	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Digital Pressure Indicator using Pneumatic pump , DMM By Comparison method as per DKD- R 6-1	-4 mbar to +4 mbar	0.03 mbar
125	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Vacuum Dial / Digital Gauges, Vacuum Calibrator & Vacuum Transmitters	Comparator, DMM	-1 bar to 0	0.0004 bar
126	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	0.1 kN to 1 kN	0.91%
127	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	1 kN to 5 kN	0.79%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

69 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
128	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	100 kN to 1000 kN	2%
129	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	5 kN to 50 kN	1.31%
130	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better, IS 1828 -1: 2022	50 kN to 500 kN	0.93%
131	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Tension mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	0.1 kN to 1 kN	1.91%
132	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Tension mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	1 kN to 5 kN	0.79%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

70 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
133	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Tension mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1: 2022	5 kN to 50 kN	1.31%
134	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Tension mode	Using Load cell with Indicator of Class 1 or better as per IS 1828 -1:2022	50 kN to 500 kN	0.93%
135	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balance of Class II and Coarser, Readability: 0.01 g	Using F1 Class weights as per OIML R-76-1	100 mg to 1 kg	9 mg
136	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser Readability 0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 80 g	0.05 mg
137	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser, Readability :0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 200 g	0.06 mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

71 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
138	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class I and Coarser, Readability :0.001 mg	Using E1 Class weights as per OIML R-76-1	1 mg to 5 g	0.01 mg
139	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class III and Coarser, Readability: 0.2 g	Using F1 Class weights as per OIML R-76-1	1 g to 20 kg	100 mg
140	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class III and Coarser, Readability: 1 g	Using F2 Class weights as per OIML R-76-1	5 g to 50 kg	2 g
141	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class IIII and Coarser Readability: 50 g	Using M1/F2 Class weights as per OIML R-76-1	500 g to 300 kg	34 g
142	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances of Class IIII and Coarser, Readability: 10 g	Using F2 Class weights as per OIML R-76-1	100 g to 100 kg	10g
143	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo-Hygrometer/ RH Sensors/ with indicator / Recorder/ Data logger	Using Humidity Chamber & Digital RH & Temperature Indicator with Sensor Probe by Comparison Method	10 %rh to 95 %rh @25°C	1.68% rh

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

72 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
144	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo- Hygrometer/RH Sensors/ with indicator/ Recorder/ Data logger	Using Humidity Chamber & Digital RH & Temperature Indicator with Sensor Probe by Comparison Method	10 °C to 50 °C @ 50%rh	0.66°C
145	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber	Multi Position Calibration Using Wireless Data Loggers (9 Point)	15 %rh to 95 % rh @ 25°C	2.13%rh
146	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber @ 50%RH	Multi Position Calibration Using Wireless Data Loggers (9 Point)	15 °C to 50 °C	1.81°C
147	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/Salt Spray Chamber/ Environmental Chamber	Single Position Calibration Using Digital RH & Temperature indicator with Sensor probe by Comparison Method	10 %rh to 95 %rh @25°C	1.68%rh
148	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/Salt Spray Chamber/ Environmental Chamber	Single Position Calibration Using Digital RH & Temperature indicator with Sensor probe by Comparison Method	10 °C to 50 °C @50%rh	0.38°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

73 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
149	THERMAL- TEMPERATURE	Deep Freezers, Refrigerator, Cold Room, Store Room, Chamber	Multi Position Calibration Using data Logger with RTD Type Sensors / Wireless datalogger (9 Point)	-80 °C to 10 °C	1.75°C
150	THERMAL- TEMPERATURE	Dry Block, Furnace, Tunnel, Industrial Furnace	Multi Position Calibration Using Data Logger with N Type Thermocouple (9 Point))	400 °C to 1200 °C	6.94°C
151	THERMAL- TEMPERATURE	Environmental Chamber, Environment controlling Room, Oven, Salt Spray Chamber, (Autoclave for non medical purpose only)	Multi Position Calibration Using data Logger with RTD Type Sensors / Wireless datalogger (9 Point)	50 °C to 400 °C	1.75°C
152	THERMAL- TEMPERATURE	Store Room, Chamber, Environment Controlling Room, (BOD Incubator, Incubator for non medical purpose)	Multi Position Calibration Using data Logger with RTD Type Sensors / Wireless datalogger (9 Point)	10 °C to 50 °C	1.75°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

74 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
153	THERMAL- TEMPERATURE	Temp. Indicator/Controller of Liquid bath, Dry Block, Freezers,Refrigerato r,Incubator, BOD Incubator, Cold Room, Chamber,Environme ntal Chamber, Salt Spray Chamber	Single Position Calibration Using SPRT and Read Unit Precision Temperature Scanner by Comparison Method	-80 °C to 50 °C	0.45°C
154	THERMAL- TEMPERATURE	Temp. Indicator/Controller of Liquid bath, Oven, Dry Block, Furnace, Autoclave, Melting Point App., Chamber, Environmental Chamber, Salt Spray Chamber	Single Position Calibration Using SPRT and Read Unit Precision Temperature Scanner by Comparison Method	50 °C to 600 °C	0.49°C
155	THERMAL- TEMPERATURE	Temperature Indicator/ Controller of Dry Block, Furnace, Melting Point App.	Single Position Calibration Using S Type with Precision Tempreture Scanner by Comparison Method	600 °C to 1200 °C	1.83°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

75 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
156	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter	Using in Dry Block Calibrator (400 to 1200°C) With S Type Thermocouple and Read Unit by Comparison Method	600 °C to 1200 °C	1.74°C
157	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter, Temp. Gauge	Using in Dry Block Calibrator (50 to 650°C)With SPRT with Precision Temperature Scanner by Comparison Method	250 °C to 600 °C	0.67°C
158	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Data Logger (Inbuilt Sensor), Digital Thermometer, Temp. Transmitter, Temp. Gauge, Temp. Calibrator	Using Silicon Oil Temperature Bath (50 to 250°C) With SPRT with Precision Temperature Scanner by Comparison Method	50 °C to 250 °C	0.28°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE THE BUSINESS HUB, VAPI,

VALSAD, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

76 of 76

Validity

12/01/2023 to 11/01/2025

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
159	THERMAL- TEMPERATURE	Temperature Sensor or Thermocouple with / without Indicator, Temperature & RH Data Logger, Temperature & RH Data Logger with / without indicator, Data Logger (Inbuilt Sensor), Temperature inbuilt Sens	Using Low Temperature Bath With SPRT with Precision Temperature Scanner by Comparison	-30 °C to 50 °C	0.29°C

^{*} CMCs represent expanded uncertainties expressed at approximately the 95% level of confidence, using a coverage factor of k = 2.